Dynamic light scattering (DLS) analysis together with atomic force microscopy (AFM) imaging was applied to investigate the supramolecular self-assembly properties of a series of recombinant amelogenins. The overall objective was to ascertain the contribution of certain structural motifs in amelogenin to protein-protein interactions during the self-assembly process. Mouse amelogenins lacking either amino- or carboxy-terminal domains believed to be involved in self-assembly and amelogenins having single or double amino acid mutations identical to those found in cases of amelogenesis imperfecta were analyzed. The polyhistidine-containingfull-length recombinant amelogenin protein [rp(H)M180] generated nanospheres with monodisperse size distribution (hydrodynamic radius of 20.7 +/- 2.9 nm estimated from DLS and 16.1 +/- 3.4 nm estimated from AFM images), comparable to nanospheres formed by full-length amelogenin rM179 without the polyhistidine domain, indicating that this histidine modification did not interfere with the self-assembly process. Deletion of the N-terminal self-assembly domain from amelogenin and their substitution by a FLAG epitope ("A"-domain deletion) resulted in the formation of assemblies with a heterogeneous size distribution with the hydrodynamic radii of particles ranging from 3 to 38 nm. A time-dependent dynamic light scattering analysis of amelogenin molecules lacking amino acids 157 through 173 and containing a hemagglutinin epitope ("B"-domain deletion) resulted in the formation of particles (21.5 +/- 6.8 nm) that fused to form larger particles of 49.3 +/- 4.3 nm within an hour. Single and double point mutations in the N-terminal region resulted in the formation of larger and more heterogeneous nanospheres. The above data suggest that while the N-terminal A-domain is involved in the molecular interactions for the formation of nanospheres, the carboxy-terminal B-domain contributes to the stability and homogeneity of the nanospheres, preventing their fusion to larger assemblies. These in vitro findings support the notion that the proteolytic cleavage of amelogenin at amino- and carboxy-terminii occurring during enamel formation influences amelogenin to amelogenin interactions during self-assembly and hence alters the structural organization of the developing enamel extracellular matrix, thus affecting enamel biomineralization.
Copyright 2000 Academic Press.