Potent monomeric and dimeric cyclic peptide very late antigen-4 (VLA-4) inhibitors have been designed based on a tetrapeptide (Ile-Leu-Asp-Val) sequence present in a 25-amino acid peptide (CS-1) reported in the literature. The peptides, synthesized by the SPPS techniques, were evaluated in the in vitro cell adhesion assays and in the in vivo inflammation models. The N- to C-terminal cyclic peptides such as cyclo(Ile-Leu-Asp-Val-NH-(CH2)2-S-(CH2)2-CO) (28) and cyclo(MeIle-Leu-Asp-Val-D-Ala-D-Ala) (31), monomeric and dimeric peptides containing piperazine (Pip) or homopiperazine (hPip) residues as linking groups, e.g. cyclo(MeIle-Leu-Asp-Val-Pip-CH2CO-NH-(CH2)2-S-CH2-CO) (49) and cyclo(MeIle-Leu-Asp-Val hPip-CH2CO-MeIle-Leu-Asp-Val-hPip-CH2CO) (58) and cyclic peptides containing an amide bond between the side chain amino group of an amino acid such as Lys and the C-terminal Val carboxyl group, e.g. Ac-cyclo(D-Lys-D-Ile-Leu-Asp-Val) (62) and beta-Ala-cyclo(D-Lys-D-Leu-Leu-Asp-Val) (68) were more potent than CS-1 in inhibiting the adhesion of the VLA-4-expressing MOLT-4 cells to fibronectin. The more potent compounds were highly selective and did not affect U937 cell adhesion to fibronectin (VLA-5), PMA-differentiated U937 cell adhesion to intercellular cell adhesion molecule- 1-expressing Chinese hamster ovary cells (LFA-1) and ADP-induced platelet aggregation (GPIIb/IIIa). A number of the more potent compounds inhibited ovalbumin-induced delayed type hypersensitivity in mice and some were 100-300 times more potent (ED50 = 0.003-0.009 mg/kg/day, s.c.) than CS-1. Two peptides, Ac-cyclo(D-Lys D-Ile-Leu-Asp-Val) (62) and cyclo(CH2CO-Ile-Leu-Asp-Val-Pip-CH2CO-Ile-Leu-Asp-Val-Pip) (55), were formulated in poly(DL-lactide-co-glycolide) depots and the release profile was investigated in vitro over a 30-day period.