Objective: Pancreatic cancer is one of the diseases with the poorest prognosis, but the associated genetic alterations are not yet well understood. The genetic alterations reported to date in pancreatic cancer include frequent mutations of the KRAS, TP53, p16, and SMAD4 genes. Mutation of the TP53 gene was reported to be associated with a poor prognosis. In this study, we analyzed the association of loss of heterozygosity (LOH) with clinicopathological features to attempt to devise effective methods in the future for clinically applying our results to diagnosis and treatment.
Methods: A total of 55 tumors from patients with primary pancreatic ductal carcinomas (34 men and 21 women, mean average age 63.9 yr) in which all the relevant clinical and pathological data were available were analyzed. A total of 46 cases were surgically resected, and nine cases were not. Tumor cells as well as corresponding normal cells were collected by microdissection under a microscope, and DNAs were purified. Allelotype analysis was performed by the PCR-based method, and the results were statistically analyzed.
Results: LOH of > or =30% were observed on chromosome arms 17p (47%, 17/36), 9p (45%, 14/31), 18q (43%, 15/35), 12q (34%, 10/29), and 6q (30%, 10/33). LOH of 12q, 17p, and 18q were significantly associated with a poor prognosis. Concordant losses of 6q with 17p and 18q were significantly associated with a poor prognosis. Concordant losses of 6q with 17p and of 12q with 18q were also found.
Conclusions: Because LOH of 12q, 17p, and 18q are significantly associated with a poor prognosis, mutation of the putative tumor suppressor genes on these chromosome arms may play significant roles in the disease progression. Concordant losses of 6q with 17p and of 12q with 18q suggest that protein products of putative tumor suppressor genes on 6q and 12q may function in association with TP53 and SMAD4, respectively.