Weak anion-exchange (WAX) type chiral stationary phases (CSPs) based on tert.-butyl carbamoyl quinine as chiral selector (SO) and different types of silica particles (porous and non-porous) as chromatographic support are evaluated in packed capillary electrochromatography (CEC). Their ability to resolve the enantiomers of negatively charged chiral analytes, e.g., N-derivatized amino acids, in the anion-exchange mode and their electrochromatographic characteristics are described in dependence of several mobile phase parameters (pH, buffer type and concentration, organic modifier type and concentration) and other experimental variables (electric field strength, capillary temperature). The inherent "zwitterionic" surface character of such silica-based WAX type CSPs (positively charged SO and negatively charged residual silanols) allows the reversal of the electroosmotic flow (EOF) towards the anode at pH values below the isoelectric point (pI) of the modified surface, whereas a cathodic EOF results at pH values above the pI. Since for negatively charged analytes also an electrophoretic transport increment has to be considered, which can be either in or against the EOF direction, several distinct modes of elution have been observed under different stationary phase and mobile phase conditions: (i) co-electrophoretic elution of the negatively charged solutes with the anodic EOF in the negative polarity mode, (ii) counter-electrophoretic elution with the cathodic EOF in the positive polarity mode, and (iii) electrophoretically dominated elution in the negative polarity mode with a cathodic EOF directed to the injection end of the capillary. Useful enantioseparations of chiral acids have been obtained with all three modes. Enantioselectivity values as high as under pressure-driven conditions and theoretical plate numbers up to 120000 per meter could be achieved under electrically driven conditions. A repeatability study yielded RSD values below 2% for retention times and RSD values in the range of 5-10% for theoretical plate numbers and resolution, thus clearly establishing the reliability of the investigated anion-exchange type CEC enantioseparation methods.