Dopamine-replacement strategies form the basis of most symptomatic treatments for Parkinson's disease. However, since long-term dopamine-replacement therapies are characterized by many side effects, most notably dyskinesia, the concept of a nondopaminergic therapy for Parkinson's disease has attracted great interest. To date, it has proved difficult to devise a nondopaminergic therapy with efficacy comparable to that of dopamine replacement. In animal models of Parkinson's disease, loss of striatal dopamine leads to enhanced excitation of striatal NR2B-containing NMDA receptors. This is responsible, in part at least, for generating parkinsonian symptoms. Here we demonstrate that, in the MPTP-lesioned marmoset, monotherapy with the NR2B-selective NMDA receptor antagonist, ifenprodil, administered de novo, has antiparkinsonian effects equivalent to those of l-DOPA (administered as its methyl ester form). In MPTP-lesioned marmosets, median mobility scores, following vehicle-treatment were 12.5/h (range 6-21), compared to 61/h (range 26-121) in normal, non-MPTP-lesioned animals. Following ifenprodil (10 mg/kg) treatment in MPTP-lesioned marmosets, the median mobility score was 66/h (range 34-93), and following l-DOPA (10 mg/kg i.p.) treatment 89/h (range 82-92). The data support the proposal that NR2B-selective NMDA receptor antagonists have potential as a nondopaminergic monotherapy for the treatment of parkinsonian symptoms when given de novo.
Copyright 2000 Academic Press.