Despite its beneficial role in host defense mechanisms, excessive nitric oxide (NO) production by activated macrophages has been implicated in several inflammatory diseases. To clarify the mechanisms of anti-inflammatory activities of Polygonum tinctorium, we evaluated whether extracts of P. tinctorium could modulate the production of NO by activated macrophages. An AcOEt extract of P. tinctorium markedly inhibited NO synthesis by interferon-gamma (IFN-gamma)/lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages and the macrophage-like cell line RAW 264.7 in a dose-dependent manner. Inhibition of NO synthesis was achieved by reducing inducible NO synthase (iNOS) expression at protein and mRNA levels. However, the AcOEt extract of P. tinctorium failed to inhibit NO synthesis when iNOS was already expressed following stimulation with IFN-gamma and LPS. The AcOEt extract also exhibited inhibitory activity on iNOS expression in human lung epithelial A549 cells stimulated with a combination of IFN-gamma, TNF-alpha and IL-1 beta without affecting the expression of constitutive isoforms of NOS. Furthermore, in vivo injection of the AcOEt extract of P. tinctorium into LPS-treated mice significantly reduced NO synthesis by peritoneal exudate cells under ex vivo conditions. These results suggest that P. tinctorium extract may be a potential therapeutic modulator of NO synthesis in various pathological conditions.