Ribonuclease inhibitor (RI) binds diverse mammalian RNases with extraordinary avidity. Here, we have investigated the structural basis for this tight binding and broad specificity by mutational analysis of the complexes of RI with angiogenin (Ang) and RNase A (K(D)=0.5 fM and 43 fM, respectively). Both crystal structures are known; the interfaces are large, and the ligands dock similarly, although few of the specific interactions formed are analogous. Our previous mutagenesis studies focused primarily on one contact region, containing RI 434-438 and the enzymatic active site. Many single-residue replacements produced extensive losses of binding energy (2.3-5.9 kcal/mol), suggesting that this region constitutes a "hot spot" in both cases. We have now explored the roles of most of the remaining RI residues that interact with Ang and/or RNase A. One major cluster in each complex lies in a Trp-rich area of RI, containing Trp261, Trp263, Trp318, and Trp375. Although the energy losses from individual replacements in this portion of the Ang complex were small-to-moderate (0-1.5 kcal/mol), the changes from multiple substitutions were much greater than additive, and the binding energy provided by this region is estimated to be approximately 6 kcal/mol (30 % of total). Effects of replacing combinations of hot spot components had also been found to be superadditive, and this negative cooperativity is now shown to extend to the neighboring contact residue RI Ser460. The overall contribution of the hot spot, taking superadditivity into account, is then approximately 14-15 kcal/mol. The hot spot and Trp-rich regions, although spatially well separated, are themselves functionally linked. No other parts of the RI-Ang interface appear to be energetically important. Binding of RNase A is more sensitive to substitutions throughout the interface, with free energy losses>/=1 kcal/mol produced by nearly all replacements examined, so that the sum of losses greatly exceeds the binding energy of the complex. This discrepancy can be explained, in part, by positive cooperativity, as evident from the subadditive effects observed when combinations of residues in either the hot spot or Trp-rich region are replaced. These findings suggest that the binding energy may be more widely distributed in the RNase A complex than in the Ang complex.
Copyright 2000 Academic Press.