Steady-state arterial spin tagging approaches can provide quantitative images of CBF, but have not been validated in humans. The work presented here compared CBF values measured using steady-state arterial spin tagging with CBF values measured in the same group of human subjects using the H(2)(15)O IV bolus PET method. Blood flow values determined by H(2)(15)O PET were corrected for the known effects of incomplete extraction of water across the blood brain barrier. For a cortical strip ROI, blood flow values determined using arterial spin tagging (64+/-12 cc/100 g/min) were not statistically different from corrected blood flow values determined using H(2)(15)O PET (67+/-13 cc/100 g/min). However, for a central white matter ROI, blood flow values determined using arterial spin tagging were significantly underestimated compared to corrected blood flow values determined using H(2)(15)O PET. This underestimation could be caused by an underestimation of the arterial transit time for white matter regions.