Activation of MAP kinase (ERK-1/ERK-2), tyrosine kinase and VEGF in the human brain following acute ischaemic stroke

Neuroreport. 2000 Aug 21;11(12):2759-64. doi: 10.1097/00001756-200008210-00030.

Abstract

We examined expression of vascular endothelial growth factor (VEGF), phosphorylation of mitogen activated protein kinase (MAP) kinase (ERK1 and ERK2) and tyrosine phosphorylation in 19 patients (aged 58-90 years; mean 75) who died 1-44 days after acute ischaemic stroke. In the grey matter penumbra, 13 of 19 patients showed an increase in MAP kinase tyrosine phosphorylation (ERK1; 2.0- to 8-fold, ERK2; 2.2- to 11-fold) compared with normal contralateral tissue. In almost all cases, ERK-2 phosphorylation was higher than ERK1. Of these 13 patients, 11 also showed a general increase in tyrosine kinase phosphorylation, and eight expressed increased levels of VEGF protein (2.5- to 5-fold). In tissue examined directly from the infarct core, activation of the above proteins was not observed in the, majority of patients. In the white matter, seven of 19 patients (penumbra), and nine of 19 patients (stroke) had an increase in MAP kinase tyrosine phosphorylation (ERK1; 2.0- to 4.6-fold and ERK-2; 2.3- to 5.4-fold respectively) compared with normal contralateral tissue. There was no relationship between activation of MAP kinase and expression of VEGF. Examination of phosphorylated MAP kinase by immunohistochemistry revealed an increase in immunoreactivity in neurones, astroglial cells, reactive microglia and endothelial cells in areas surrounding infarcts, especially in areas with the highest density of microvessels. In conclusion, chronic activation of tyrosine phosphorylated events, in particular redistribution and phosphorylation of MAP kinase (ERK1/ERK2) occurs consistently in the grey matter penumbra of brain tissue following ischaemic stroke, and may be associated with increase in expression of VEGF. These signal transduction events could be important determinants of the extent of neuronal survival and/or angiogenic activity in the recovering brain tissue.

MeSH terms

  • Acute Disease
  • Aged
  • Aged, 80 and over
  • Brain / metabolism*
  • Brain Ischemia / metabolism*
  • Endothelial Growth Factors / physiology*
  • Enzyme Activation
  • Female
  • Humans
  • Immunohistochemistry
  • Lymphokines / physiology*
  • Male
  • Middle Aged
  • Mitogen-Activated Protein Kinase 1 / metabolism*
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / metabolism*
  • Phosphorylation
  • Protein-Tyrosine Kinases / metabolism*
  • Stroke / metabolism*
  • Tissue Distribution
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors

Substances

  • Endothelial Growth Factors
  • Lymphokines
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors
  • Protein-Tyrosine Kinases
  • Mitogen-Activated Protein Kinase 1
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases