B-cell precursor acute lymphoblastic leukemias (BCP-ALLs) are increasingly treated on risk-adapted protocols based on presenting clinical and biological features. Residual molecular positivity of clonal immunoglobulin (IG) and T-cell receptor (TCR) rearrangements allows detection of patients at an increased risk of relapse. If these rearrangements are to be used for universal follow-up, it is important to determine the extent to which they are informative in different BCP-ALL subsets. We show that IGH V-D-J rearrangements occur in 89% of 163 BCP-ALL, with no significant variation according to age or genotype (BCR-ABL, TEL-AML1, MLL-AF4, and E2A-PBX1). In contrast, TCRG rearrangements, which occur in 60% of patients overall, are frequent in BCR-ABL and TEL-AML1, are less so in MLL-AF4, and are virtually absent in infants aged predominantly from 1 to 2 years and in E2A-PBX1 ALLs. Incidence of the predominant TCRD Vdelta2-Ddelta3 rearrangement decreases with age but is independent of genotype. These differences are not due to differential recombination activating gene activity, nor can they be explained adequately by stage of maturation arrest. Analysis of MLL-AF4 BCP-ALL is in keeping with transformation of a precursor at an early stage of ontogenic development, despite the adult onset of the cases analyzed. We postulate that the complete absence of TCRG rearrangement in E2A-PBX1 cases may result from deregulated E2A function. These data also have practical consequences for the use of TCR clonality for the molecular follow-up of BCP-ALL.