Many of the problems associated with using natural allergenic products for allergy diagnosis and treatment can be overcome with use of genetically engineered recombinant allergens. Over the past 10 years, the most important allergens from mites, pollens, animal dander, insects, and foods have been cloned, sequenced, and expressed. In many cases the three-dimensional allergen structure has been determined and B-cell and T-cell epitopes have been mapped. These studies show that allergens have diverse biologic functions (they may be enzymes, enzyme inhibitors, lipocalins, or structural proteins) and that as a rule the allergen function is unrelated to its ability to cause IgE antibody responses. High-level expression systems have been developed to produce recombinant allergens in bacteria, yeast, or insect cells. Recombinant allergens show comparable IgE antibody binding to their natural counterparts (where available) and show excellent reactivity on skin testing and in in vitro diagnostic tests. Cocktails of recombinant allergens can be formulated with predetermined and uniform allergen levels, which could replace natural allergens and result in the development of innovative, patient-based tests for allergy diagnosis. Recombinant allergens also offer the exciting possibility of developing new forms of allergen immunotherapy, including the use of hypoallergens, allergens coupled to IgE suppressive adjuvants, and peptide-based therapies. The production of recombinant allergens as defined molecular entities makes it feasible to consider the possibility of developing prophylactic allergen vaccines. The introduction of recombinant allergens in research and in clinical trials should lead to significant improvements in allergy diagnosis and treatment.