Flupirtine is an analgesic drug thought to have NMDA receptor antagonistic and antiapoptotic effects. We investigated the effects of Ethyl-2-amino-6-(4-(4-fluorbenzyl)amino)-pyridine-3-carbamamic+ ++ acid, maleate (flupirtine) and the related compound N-(2-amino-4-(4-fluorobenzylamino)-phenyl)-carbamic acid, ethyl ester) (retigabine) (Desaza-flupirtine) on the toxicity of L-glutamate and L-3,4-dihydroxyphenylalanine (L-DOPA) in rat pheochromocytoma PC 12 cells in vitro. Both drugs (10 microM) markedly decreased nonreceptor-mediated necrotic cell death in PC 12 cultures treated with L-glutamate (10 mM) for 72 h. In contrast, apoptosis induced by L-DOPA (250 microM) after 48 h was not affected by either substance. While L-DOPA elicited massive generation of reactive oxygen intermediates, L-glutamate-induced cell death was accompanied by only slightly increased levels of reactive oxygen intermediates. Flupirtine and retigabine exerted anti-oxidative effects in PC 12 cultures independent of their ability to prevent cell death. Further examination of the protective action of flupirtine and retigabine against L-glutamate toxicity showed that it had no influence on monoamine oxidase (monoamine: oxygen oxidoreductase (deaminating), EC 1.4.3.4., MAO) activity. Thus, flupirtine and retigabine provided protection against cystine deprivation and L-glutamate toxicity but did not protect against L-glutamate under cystine-free conditions indicating that both compounds are sufficiently effective to compensate the oxidative stress elicited by cystine deprivation but not excessive activity of monoamine oxidase after L-glutamate treatment.