The sarcoglycan complex in striated muscle is a heterotetrameric unit integrally associated with sarcospan in the dystrophin-glycoprotein complex. The sarcoglycans, alpha, beta, gamma, and delta, are mutually dependent with regard to their localization at the sarcolemma, and mutations in any of the sarcoglycan genes lead to limb-girdle muscular dystrophies type 2C-2F. In smooth muscle beta- and delta-sarcoglycans are associated with epsilon-sarcoglycan, a glycoprotein homologous to alpha-sarcoglycan. Here, we demonstrate that gamma-sarcoglycan is also a component of the sarcoglycan complex in the smooth muscle. First, we show the presence of gamma-sarcoglycan in a number of smooth muscle-containing organs, and we verify the existence of identical transcripts in skeletal and smooth muscle. The specificity of the expression of gamma-sarcoglycan in smooth muscle was confirmed by analysis of smooth muscle cells in culture. Next, we provide evidence for the association of gamma-sarcoglycan with the sarcoglycan-sarcospan complex by biochemical analysis and comparison among animal models for muscular dystrophy. Moreover, we find disruption of the sarcoglycan complex in the vascular smooth muscle of a patient with gamma-sarcoglycanopathy. Taken together, our results prove that the sarcoglycan complex in vascular and visceral smooth muscle consists of epsilon-, beta-, gamma-, and delta-sarcoglycans and is associated with sarcospan.