In the present study we further investigate functions of the neural cell adhesion molecule (NCAM) in the mature central nervous system and its implications for animal behaviour. To this end we generated transgenic mice expressing the major NCAM isoform with the largest cytoplasmic domain, NCAM180, under control of a promoter for the small form neurofilament gene. Transgenic mice were also bred with mice deficient in endogenous NCAM (Ncam-/- mice) so that effects of NCAM180 could be analysed in the presence and absence of endogenous NCAM. While overexpression of transgenic NCAM180 was without apparent behavioural or morphological effect, its expression in Ncam-/- mice counteracted NCAM ablation-induced aggressive, anxiety-like and antidepressant-like behaviour. It furthermore prevented a hypersensitivity of Ncam-/- mice to the anxiolytic serotonin1A (5-HT1A) receptor agonist buspirone. Such recovery of emotional behaviour and behavioural 5-HT1A response occurred in spite of misdevelopment of the olfactory bulb and hippocampus that is characteristic of Ncam-/- mice, and without an apparent change in the expression of 5-HT1A binding sites in the brain. Hippocampus- and amygdala-dependent learning, though disturbed in Ncam-/- mice, remained unaffected by the transgenic NCAM180. We suggest an involvement of NCAM180-mediated cell recognition processes in the serotonergic modulation of emotional behaviour in adult mice.