Nucleotide pool imbalances have been reported to affect the fidelity of DNA replication and repair in prokaryotic and eukaryotic cells. We have reported previously that the mutagen-hypersensitive thymidine kinase (TK)-deficient Friend erythroleukemia (FEL) cells (subclones 707BUF and 707BUE), have a more than sixfold increase in the dCTP:dTTP pool ratio when compared to that of wild-type, TK-positive (TK(+)) clone 707 cells. In this study we present the results of an investigation of the effect of the dCTP:dTTP pool imbalance on the accuracy of DNA replication within 707BUF cells. We examined the spontaneous mutation spectra occurring at the adenine phosphoribosyltransferase (aprt) locus within clone 707 (TK(+)) and 707BUF (TK(-)) FEL cells. Mutations recovered at the aprt locus in FEL cells comprised: base substitutions (43:73), frameshifts (14:13.5), and deletions (43:13.5) [clone 707 (TK(+)):707BUF (TK(-)), respectively, expressed as percentages]. A comparison of the mutation spectra obtained for the two cell lines did not reveal any significant increase in misincorporation of dCTP, the nucleotide in excess, in 707BUF (TK(-)) cells, during DNA replication synthesis. These data suggest that the dCTP:dTTP pool imbalance does not alter the fidelity of DNA replication synthesis in 707BUF (TK(-)) FEL cells. Rather, the predominance of GC --> AT transitions (53%) in the 707BUF (TK(-)) spectrum may reflect a reduced efficiency of repair by uracil DNA glycosylase of uracil residues within these cells.
Copyright 2000 Wiley-Liss, Inc.