Glycoprotein E-negative (gE-) laboratory strains of bovine herpesvirus 1 (BHV-1) were recently introduced as novel marker vaccines, allowing serological discrimination between vaccinated and naturally infected animals on the basis of lack or presence of antibodies against gE epitopes. The applicability pf this approach is based on the genetic stability of the gE. However, mutant field variants of BHV-1 with a variable response in anti-gE ELISA have been isolated. The molecular characterization of a gE variant field isolate (Salwa strain) is presented here. By comparing the gE nucleotide and amino acid sequences of the Salwa strain with those of the wild strain Jura, ten mutated bases were found in the gE strain of Salwa, six of which alter the amino acid sequence, leading to changes in five amino acids. Both strains caused respiratory disease in experimentally infected calves, but Salwa generated slightly milder signs. Both viruses were excreted in nasal and ocular discharges, and were reactivated by dexamethasone treatment. In conclusion, the rather close similarities observed in the gE gene structure and pathogenicity features of the gE mutant and of the wild strain of BHV-1 confirm the genetic stability of gE. The findings indicate that the Salwa isolate is virulent, but less virulent than wild strains. Our data support the use of gE-negative marker vaccines in eradication programmes.