Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitro and in vivo

Cancer Res. 2000 Sep 15;60(18):5165-70.

Abstract

Suberoylanilide hydroxamic acid (SAHA) is the prototype of a family of hybrid polar compounds that induce growth arrest in transformed cells and show promise for the treatment of cancer. SAHA induces differentiation and/or apoptosis in certain transformed cells in culture and is a potent inhibitor of histone deacetylases. In this study, we examined the effects of SAHA on the growth of human prostate cancer cells in culture and on the growth of the CWR22 human prostate xenograft in nude mice. SAHA suppressed the growth of the LNCaP, PC-3, and TSU-Pr1 cell lines at micromolar concentrations (2.5-7.5 microM). SAHA induced dose-dependent cell death in the LNCaP cells. In mice with transplanted CWR222 human prostate tumors, SAHA (25, 50, and 100 mg/kg/day) caused significant suppression of tumor growth compared with mice receiving vehicle alone; treatment with 50 mg/kg/day resulted in a 97% reduction in the mean final tumor volume compared with controls. At this dose, there was no detectable toxicity as evaluated by weight gain and necropsy examination. Increased accumulation of acetylated core histones was detected in the CWR22 tumors within 6 h of SAHA administration. SAHA induced prostate-specific antigen mRNA expression in CWR22 prostate cancer cells, resulting in higher levels of serum prostate-specific antigen than predicted from tumor volume alone. The results suggest that hydroxamic acid-based hybrid polar compounds inhibit prostate cancer cell growth and may be useful, relatively nontoxic agents for the treatment of prostate carcinoma.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology*
  • Antineoplastic Agents / toxicity
  • Cell Death / drug effects
  • Cell Division / drug effects
  • Enzyme Inhibitors / pharmacology*
  • Enzyme Inhibitors / toxicity
  • Growth Inhibitors / pharmacology
  • Histone Deacetylase Inhibitors
  • Histones / metabolism
  • Humans
  • Hydroxamic Acids / pharmacology*
  • Hydroxamic Acids / toxicity
  • Male
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Neoplasm Transplantation
  • Prostate-Specific Antigen / blood
  • Prostatic Neoplasms / drug therapy*
  • Prostatic Neoplasms / enzymology
  • Prostatic Neoplasms / pathology
  • Transplantation, Heterologous
  • Tumor Cells, Cultured / drug effects
  • Vorinostat

Substances

  • Antineoplastic Agents
  • Enzyme Inhibitors
  • Growth Inhibitors
  • Histone Deacetylase Inhibitors
  • Histones
  • Hydroxamic Acids
  • Vorinostat
  • Prostate-Specific Antigen