We report on first experimental signatures for chaos-assisted tunneling in a two-dimensional annular billiard. Measurements of microwave spectra from a superconducting cavity with high frequency resolution are combined with electromagnetic field distributions experimentally determined from a normal conducting twin cavity with high spatial resolution to resolve eigenmodes with properly identified quantum numbers. Distributions of quasidoublet splittings serve as basic observables for the tunneling between whispering gallery-type modes localized to congruent, but distinct tori which are coupled weakly to irregular eigenstates associated with the chaotic region in phase space.