Background: Cerebral oximetry is a noninvasive bedside technology using near-infrared light to monitor cerebral oxygen saturation (Sco2) in an uncertain mixture of arteries, capillaries, and veins. The present study used frequency domain near-infrared spectroscopy to determine the ratio of arterial and venous blood monitored by cerebral oximetry during normoxia, hypoxia, and hypocapnia.
Methods: Twenty anesthetized children aged < 8 yr with congenital heart disease of varying arterial oxygen saturation (Sao2) were studied during cardiac catheterization. Sco2, Sao2, and jugular bulb oxygen saturation (Sjo2) were measured by frequency domain near-infrared spectroscopy and blood oximetry at normocapnia room air, normocapnia 100% inspired O2, and hypocapnia room air.
Results: Among subject conditions, Sao2 ranged from 68% to 100%, Sjo2 from 27% to 96%, and Sco2 from 29% to 92%. Sco2 was significantly related to Sao2 (y = 0. 85 x -17, r = 0.47), Sjo2 (y = 0.77 x +13, r = 0.70), and the combination (Sco2 = 0.46 Sao2 + 0.56 Sjo2 - 17, R = 0.71). The arterial and venous contribution to cerebral oximetry was 16 +/- 21% and 84 +/- 21%, respectively (where Sco2 = alpha Sao2 + beta Sjo2 with alpha and beta being arterial and venous contributions). The contribution was similar among conditions but differed significantly among subjects (range, approximately 40:60 to approximately 0:100, arterial:venous).
Conclusions: Cerebral oximetry monitors an arterial/venous ratio of 16:84, similar in normoxia, hypoxia, and hypocapnia. Because of biologic variation in cerebral arterial/venous ratios, use of a fixed ratio is not a good method to validate the technology.