Ser-15 of human p53 (corresponding to Ser-18 of mouse p53) is phosphorylated by ataxia-telangiectasia mutated (ATM) family kinases in response to ionizing radiation (IR) and UV light. To determine the effects of phosphorylation of endogenous murine p53 at Ser-18 on biological responses to DNA damage, we introduced a missense mutation (Ser-18 to Ala) by homologous recombination into both alleles of the endogenous p53 gene in mouse embryonic stem (ES) cells. Our analyses showed that phosphorylation of murine p53 at Ser-18 in response to IR or UV radiation was required for a full p53-mediated response to these DNA damage-inducing agents. In contrast, phosphorylation of p53 at Ser-18 was not required for ATM-dependent cellular resistance after exposure to IR. Additionally, efficient acetylation of the C terminus of p53 in response to DNA damage did not require phosphorylation of murine p53 at Ser-18.