Chemotherapy-based eradication programs are aimed at stopping transmission of Wuchereria bancrofti by its obligatory mosquito vector. This study compares one year post-treatment W. bancrofti infection rates of Anopheles punctulatus, the main vector of lymphatic filariasis in Papua New Guinea, using traditional dissection techniques and a polymerase chain reaction (PCR)-based ELISA of a parasite-specific Ssp I repeat. A total of 633 mosquitoes in 35 batches were dissected. Six batches contained W. bancrofti-infected mosquitoes, giving a minimum infection rate of 0.9%. This value was not different than the actual infection rate, which was 9 (1.4%) of 633 mosquitoes (P = 0.48). The DNA was extracted from 47 pools containing a mean of 13.2 mosquitoes per pool. A total of 621 mosquitoes were processed for the PCR-ELISA, including 486 caught by human bait and 135 by light trap, which included both dead and live mosquitoes. Of 23 pools of alcohol-preserved human-bait mosquitoes, seven were positive by the PCR-ELISA, giving an infection rate identical to that obtained by dissection of individual mosquitoes (1.4%). The minimum infection rates for pools of light-trap mosquitoes found dead and alive were 2.7% (2 of 74) and 4.9% (3 of 61), respectively. These values did not differ from each other (P = 0.84), but the overall infection rate of light-trap mosquitoes was greater than that of mosquitoes captured by human bait (3.7% versus 1.4%; P = 0.09). These data indicate that the PCR-ELISA of a W. bancrofti Ssp I repeat using pools of mosquitoes is comparable to traditional dissection techniques for monitoring transmission intensity following introduction of mass chemotherapy. This approach may also be useful for rapid and cost-effective assessment of transmission in endemic areas where the frequency of overt lymphatic pathology is low.