Autoradiographic localization of 5-HT(2A) receptors in the human brain using [(3)H]M100907 and [(11)C]M100907

Synapse. 2000 Dec 15;38(4):421-31. doi: 10.1002/1098-2396(20001215)38:4<421::AID-SYN7>3.0.CO;2-X.

Abstract

M100907 (MDL 100907, R-(+)-alpha-(2, 3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidinemethanol++ +) is a new selective antagonist of 5-HT(2A) receptors. The compound has been labeled with (11)C and proved useful for in vivo studies of 5-HT(2A) receptors using positron emission tomography (PET). In the present study the distribution of 5-HT(2A) receptors was examined in the postmortem human brain using whole hemisphere autoradiography and [(3)H]M100907 and [(11)C]M100907. The autoradiograms showed very dense binding to all neocortical regions, whereas the hippocampus was only weakly labeled with [(3)H]M100907. Other central brain regions, such as the basal ganglia and thalamus, showed low [(3)H]M100907 binding, reflecting low densities of 5-HT(2A) receptors. The cerebellum or structures of the brain stem were virtually devoid of 5-HT(2A) receptors. [(11)C]M100907 gave images qualitatively similar to those of [(3)H]M100907, although with lower spatial resolution. The labeling of human 5-HT(2A) receptors with [(3)H]M100907 was inhibited by the addition of the 5-HT(2A) receptor blockers ketanserin or SCH 23390 (10 microM), leaving a very low background of nonspecific binding. The 5-HT(1A) receptor antagonist WAY-100635 and the D(2)-dopamine receptor antagonist raclopride had no effect on the binding of [(3)H]M100907. The selective labeling of 5-HT(2A) receptors with [(3)H]M100907 clearly shows that this compound is suitable for further studies of the human 5-HT(2A) receptor subtype in vitro. The in vitro autoradiography of the distribution of 5-HT(2A) receptors obtained with radiolabeled M100907 provides detailed qualitative and quantitative information on the distribution of 5-HT(2A)-receptors in the human brain as well as reference information for the interpretation of previous initial results at much lower resolution in humans in vivo with PET and [(11)C]M100907.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Autoradiography
  • Brain / metabolism*
  • Carbon Radioisotopes
  • Female
  • Fluorobenzenes / metabolism*
  • Humans
  • Male
  • Middle Aged
  • Neocortex / metabolism
  • Piperidines / metabolism*
  • Receptor, Serotonin, 5-HT2A
  • Receptors, Serotonin / metabolism*
  • Serotonin Antagonists / metabolism*
  • Tissue Distribution
  • Tritium

Substances

  • Carbon Radioisotopes
  • Fluorobenzenes
  • Piperidines
  • Receptor, Serotonin, 5-HT2A
  • Receptors, Serotonin
  • Serotonin Antagonists
  • Tritium
  • volinanserin