Hypothesized risk factors for psychostimulant, amphetamine, and cocaine abuse include dopamine (DA) receptor polymorphisms, HIV infection, schizophrenia, drug-induced paranoias, and movement disorders; however, the molecular, cellular, and biochemical mechanisms that predispose to drug sensitivity or drive the development of addiction are incompletely understood. Using the Borna disease rat, an animal model of viral-induced encephalopathy wherein sensitivity to the locomotor and stereotypic behavioral effects of d-amphetamine and cocaine is enhanced (Solbrig et al., 1994, 1998), we identify a specific neurotrophin expression pattern triggered by striatal viral injury that increases tyrosine hydroxylase activity, an early step in DA synthesis, to produce a phenotype of enhanced amphetamine sensitivity. The reactive neurotrophin pattern provides a molecular framework for understanding how CNS viral injury, as well as other CNS adaptations producing similar growth factor activation profiles, may influence psychostimulant sensitivity.