Genome transcription is a critical stage in the life cycle of a virus, as this is the process by which the viral genetic information is presented to the host cell protein synthesis machinery for the production of the viral proteins needed for genome replication and progeny virion assembly. Viruses with dsRNA genomes face a particular challenge in that host cells do not produce proteins which can transcribe from a dsRNA template. Therefore, dsRNA viruses contain all of the necessary enzymatic machinery to synthesize complete mRNA transcripts within the core without the need for disassembly. Indeed one of the more striking observations about genome transcription in dsRNA viruses is that this process occurs efficiently only when the transcriptionally competent particle is fully intact. This observation suggests that all of the components of the TCP, including the viral genome, the transcription enzymes, and the viral capsid, function together to produce and release mRNA transcripts and that each component has a specific and critical role to play in promoting the efficiency of this process. This review has examined the process of genome transcription in dsRNA viruses from the perspective of rotavirus as a model system. However, despite numerous architectural and organizational differences among the families of dsRNA viruses, numerous studies suggest that the basic mechanism of mRNA production may be similar in most, if not all, viruses having dsRNA genomes. Important functional similarities include (1) the presence of a capsid-bound RNA-dependent RNA polymerase, which produces single-stranded mRNA transcripts from the dsRNA genome and regenerates the dsRNA genome from single-stranded RNA templates; (2) in viruses infecting eukaryotic hosts, the presence of all the enzymatic activities needed to generate the 5' cap required by the eukaryotic translation machinery; (3) the high degree of structural order present in the packaged genome, suggesting the requirement for organization in the viral core; (4) the role of the innermost capsid protein as a scaffold on which the core components of the transcription apparatus are assembled; and (5) the release of nascent mRNA transcripts through channels at the icosahedral vertices. The process of genome transcription in dsRNA viruses will become better understood as structural studies progress to higher resolution and as more viruses become amenable to study using site-directed mutagenesis coupled with viral reconstitution to generate recombinant particles having precise functional and structural changes. Future studies will dissect important intermolecular interactions required for efficient mRNA synthesis and will shed further light on the reasons for which the viral core must be structurally intact in order for transcription to occur efficiently. Structural studies of the capping enzymes at atomic resolution will reveal how multiple enzyme activities reside within a single polypeptide and how they act in concert to synthesize the 5' cap on the end of each mature transcript. Perhaps most interestingly, high resolution structural studies of actively transcribing virions will provide insight into the conformational changes that occur within the core during mRNA synthesis. Together, these studies will clarify the function of this complex macromolecular machine and will also shed additional light on the basic principles of virus architecture and assembly, as well as provide avenues for the design of antiviral therapies.