Reversibility of the Ca(2+) channel alpha(1)-beta subunit interaction

Biochem Biophys Res Commun. 2000 Nov 2;277(3):729-35. doi: 10.1006/bbrc.2000.3750.

Abstract

The auxiliary beta subunit importantly regulates voltage-dependent Ca(2+) channel activity through an interaction with the AID domain, a binding site located in the cytoplasmic I-II linker of the ion-conducting alpha(1) subunit. In the present study, we used two synthetic peptides corresponding to partial sequences of the I-II linker of alpha(1A) (AID(A)-peptides) as tools to disrupt the alpha(1)-beta interaction. In vitro binding experiments confirmed that these peptides exhibit a reasonable affinity to the neuronal beta(3) subunit to serve this purpose, although they failed to prevent immunoprecipitation of native N- and P/Q-type channels by anti-beta(3) antibodies. Together, our results (i) provide evidence for the reversibility of channel subunit association suggesting that the disruption of the alpha(1)-beta interaction may be a possible mechanism for Ca(2+) channel regulation in vivo, and (ii) support a model whereby the alpha(1)-beta association is based on multiple interaction sites.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Binding Sites
  • Calcium Channels / metabolism*
  • Molecular Sequence Data
  • Protein Conformation
  • Rabbits
  • Rats

Substances

  • Calcium Channels