The viral macrophage inflammatory protein II (vMIP-II) shows a broad spectrum interaction with both CC and CXC chemokine receptors including CCR5 and CXCR4, two principal coreceptors for the cellular entry of human immunodeficiency virus type 1 (HIV-1). Recently, we have shown that a synthetic peptide derived from the N-terminus of vMIP-II, designated as V1, is a potent antagonist of CXCR4 but not CCR5 [Zhou, N., et al. (2000) Biochemistry 39, 3782-3787]. In this study, we synthesized a series of new peptides derived from other regions of vMIP-II and characterized their binding activities with both CXCR4 and CCR5. The results provided further support for the notion that the N-terminus of vMIP-II is the major determinant for CXCR4 recognition and that vMIP-II probably interacts with other chemokine receptors such as CCR5 with different sequence and conformational determinants. To understand the structure-function relationship of V1 peptide, its solution conformation was studied using circular dichroism spectroscopy, which showed a random conformation similar to that of the corresponding N-terminus in native vMIP-II. In addition, we synthesized a series of mutant analogues of V1 containing alanine, glycine, or phenylalanine substitution at various positions. Residues Val-1, Arg-7, and Lys-9 of V1 peptide were found to be critical for receptor interaction, because single alanine replacement at these positions dramatically decreased peptide binding to CXCR4. In contrast, alanine or phenylalanine substitution at Cys-11 led to significant enhancement in peptide affinity for CXCR4. Finally, we showed that V1 peptide inhibits HIV-1 replication in CXCR4(+) T-cell lines. These studies provide new insights into the structure-function relationship of V1 peptide and demonstrate that this peptide may be a lead for the development of therapeutic agents.