Assessing plasma pharmacokinetics of cholesterol following oral coadministration with a novel vegetable stanol mixture to fasting rats

J Pharm Sci. 2001 Jan;90(1):23-8. doi: 10.1002/1520-6017(200101)90:1<23::aid-jps3>3.0.co;2-p.

Abstract

The purpose of this project was to assess the plasma pharmacokinetics of [(3)H]cholesterol following coadministration of a novel vegetable stanol mixture composed of sitostanol and campestanol (FCP-3P4) to fasting rats. Following an overnight fast (12-16 h) and 48 h post-surgery, adult male Sprague Dawley rats were divided into six treatment groups and received a single-dose oral gavage at 0700 h of either: [(3)H]cholesterol (25 microCi/mL), FCP-3P4 (5 mg/kg) + [(3)H]cholesterol (25 microCi/mL), FCP-3P4 (12.5 mg/kg) + [(3)H]cholesterol (25 microCi/mL), FCP-3P4 (25 mg/kg) + [(3)H]cholesterol (25 microCi/mL), FCP-3P4 (50 mg/kg) + [(3)H]cholesterol (25 microCi/mL), or FCP-3P4 (100 mg/kg) + [(3)H]cholesterol (25 microCi/mL). Intralipid (10%) was the vehicle used to solubilize and coadminister [(3)H]cholesterol and FCP-3P4. Liquid chromatography-mass spectrometry analysis confirmed minimal cholesterol and vegetable stanol content within 10% Intralipid. Analysis of plasma pharmacokinetics was initiated by sampling 0.5 mL of blood prior to and 0.25, 0.5 1.0, 2.0, 4.0, 6.0, 8.0, 10, 24, 28, 32, and 48 h post-oral gavage. Plasma samples were obtained by centrifugation of the blood samples and analyzed for [(3)H]cholesterol radioactivity. Pharmacokinetics analysis was performed by standard noncompartmental methods using statistical moment theory. Thin-layer chromatography was used to confirm that the majority of radioactivity measured in plasma was cholesterol (in the form of esterified or unesterified cholesterol). Greater than 90% of the radioactivity measured in all plasma samples was cholesterol-associated (in the form of either esterified or unesterified cholesterol). The coadministration of FCP-3P4 significantly decreased the area under the curve of [(3)H]cholesterol concentration versus time from 0 to 48 h (AUC(0-48h)) and maximum concentration (C(max)) in a dose-dependent manner. However, coadministration of FCP-3P4 at 25, 50, and 100 mg/kg resulted in a significant increase in apparent total body clearance (CL/F, where F is the bioavailability constant), apparent volume of distribution (V(d)/F), and oral absorption rate constant (k(a)) of [(3)H]cholesterol compared with controls. These findings suggest that the novel vegetable stanol mixture, FCP-3P4, modifies the plasma pharmacokinetics of [(3)H]cholesterol in fasting rats on oral coadministration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Oral
  • Animals
  • Anticholesteremic Agents / pharmacology*
  • Cholesterol / blood
  • Cholesterol / pharmacokinetics*
  • Drug Interactions
  • Fasting
  • Intestinal Absorption
  • Male
  • Phytosterols / administration & dosage
  • Phytosterols / pharmacology*
  • Rats
  • Rats, Sprague-Dawley
  • Sitosterols / administration & dosage
  • Sitosterols / pharmacology*
  • Tritium

Substances

  • Anticholesteremic Agents
  • Phytosterols
  • Sitosterols
  • Tritium
  • campestanol
  • Cholesterol
  • stigmastanol