Low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine cumulus-oocyte complexes

Mol Reprod Dev. 2000 Dec;57(4):353-60. doi: 10.1002/1098-2795(200012)57:4<353::AID-MRD7>3.0.CO;2-R.

Abstract

The effects of carbohydrates on meiotic maturation and ATP content of bovine oocytes under low oxygen tension (5%) were investigated. Furthermore, the developmental competence or intracellular H(2)O(2) contents of the oocytes matured under 5% or 20% O(2) was assessed. In vitro maturation of bovine cumulus-oocyte complexes was performed in synthetic oviduct fluid (SOF) containing 20 amino acids and hormones (SOFaa). The proportion of the oocytes that matured to the metaphase II stage in SOFaa containing 1.5 mM glucose, 0.33 mM pyruvate, and 3.3 mM lactate under 5% O(2) was dramatically lower than that of oocytes matured under 20% O(2) (P < 0.01). Similarly, the ATP content of the oocytes that matured under 5% O(2) was much lower than that of oocytes matured under 20% O(2) (P < 0.05). Under 5% O(2) the proportion of metaphase II oocytes increased with increasing glucose concentration (0-20 mM) in SOFaa without pyruvate or lactate. In addition, the ATP content of oocytes cultured in 20 mM glucose was higher (P < 0.05) than that of oocytes cultured in 1. 5 mM glucose. Two glucose metabolites (pyruvate and lactate) and a nonmetabolizable glucose analog (2-deoxy-glucose), however, had no noticeable effects on meiotic maturation under 5% O(2). These results suggest that ATP production under 5% O(2) is not dependent on the TCA cycle. Addition of iodoacetate, a glycolytic inhibitor, to SOFaa containing 20 mM glucose significantly reduced (P < 0.01) the proportion of metaphase II and ATP content. Moreover, the proportion of the development to the blastocyst stage of oocytes matured under 5% O(2) was higher (P < 0.05) than that of oocytes matured under 20% O(2). H(2)O(2) contents of oocytes matured under 5% O(2) was lower (P < 0.05) than that of oocytes matured under 20% O(2). The results of the present study demonstrate that glucose plays important roles in supporting the completion of meiotic maturation in bovine cumulus-oocyte complexes under low oxygen tension and that low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine oocytes.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Blastocyst / metabolism
  • Carbon Dioxide / metabolism
  • Cattle
  • Female
  • Glucose / metabolism
  • Hydrogen Peroxide / metabolism
  • Meiosis / physiology*
  • Nitrogen / metabolism
  • Oocytes / physiology*
  • Ovarian Follicle / physiology*
  • Oxygen / metabolism*

Substances

  • Carbon Dioxide
  • Adenosine Triphosphate
  • Hydrogen Peroxide
  • Glucose
  • Nitrogen
  • Oxygen