Impact of early post-natal deafening on auditory pathways was investigated in newborn rats deafened by daily amikacin injections from P7 to P16 inducing a complete destruction of the organ of Corti. The expression of mRNAs encoding N-methyl-D-aspartate (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazole (AMPA) and gamma-aminobutyric acid type A (GABA(A)) receptor subunits was then studied by in situ hybridization in the dorsal and ventral cochlear nucleus and in the central nucleus of the inferior colliculus (CNIC). Early post-natal deafening decreased bilaterally the expression of mRNAs encoding NR1, NR2a, NR2b and flop isoforms of AMPA receptors. On the contrary, it increased the expression of mRNAs encoding some GABA(A) subunits (alpha1, beta1, gamma2) and flip isoforms of AMPA receptors. These changes were more pronounced in cochlear nuclei than in CNIC. They suggest that auditory sensation is essential in the normal development of central auditory pathways.