An original apparatus based on laser-induced fluorescence detection is presented. One lane migration combined to four equidistant detection points allows the study of the dynamics of DNA bands during electrophoresis. We focus this article on the study of the mobility of DNA sequencing fragments as a function of temperature; mobility is determined in 4% T, 5% C and 4.3% T, 5% C cross-linked polyacrylamide gels at an electric field of 45 V/cm [T=(g acrylamide+g N,N'-methylenebisacrylamide)/100 ml solution; C=g N,N'-methylenebisacrylamide/% T]. Activation energy has been investigated under these experimental conditions with a temperature varying from 25 to 50 degrees C. The activation energy for migration through the cross-linked polyacrylamide gel decreases with fragment length under our experimental conditions and it varies along the migration.