[Beta-lactamases with a wide substrate spectrum in gram negative strictly anaerobic rods]

Med Dosw Mikrobiol. 2000;52(2):129-37.
[Article in Polish]

Abstract

This study was performed to determine the susceptibility of the clinical strains of Gram-negative strictly anaerobic rods to newer beta-lactam antibiotics. Also, the trial was undertaken to detect strains producing extended-spectrum beta-lactamases (ESBLs) and inducible beta-lactamases (IBLs) among Bacteroides spp. and Prevotella spp. rods isolated from hospitalized patients. One hundred strains of Gram-negative, obligatory anaerobic rods were applied in the study. The strains were identified in automatic ATB system using API 20 A strips. beta-lactamase-positive strains were determined with disc nitrocefin test. ESBL-producing strains were detected with double disc test according to Jarlier et al. (1988). Clavulanate was applied as the inhibitor of these beta-lactamases (AMO/CLAV disc). ESBL-positive strains were confirmed with the use of E test (TZ/TZL strip). Inducible beta-lactamases were determined by double disc method according to Sanders and Sanders (1979). Cefoxitin was the inducer of these beta-lactamases (FOX disc). Among 93 Bacteroides spp. strains and 7 Prevotella spp. strains, 91 strains (91%) produced beta-lactamases. Two ESBL-producing strains (2%) were detected. Strains producing inducible beta-lactamases (IBL) were not found. A high activity of the examined beta-lactam antibiotics against strains of Gram-negative anaerobes was found. The majority of strains were susceptible to piperacillin (95%), piperacillin combined with tazobactam (99%), ticarcillin combined with clavulanic acid (99%), meropenem (97%) and imipenem (99%). The obtained results indicate the necessity of ESBL determination among strains of the genus Bacteroides, isolated from clinical specimens. Newer beta-lactam antibiotics, especially penicillins in combination with beta-lactamase inhibitors and carbapenems, are useful in empiric therapy of infections caused by Bacteroides spp. and Prevotella spp. anaerobic rods.

Publication types

  • English Abstract

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Infections / drug therapy
  • Bacterial Infections / microbiology
  • Gram-Negative Facultatively Anaerobic Rods / drug effects*
  • Gram-Negative Facultatively Anaerobic Rods / enzymology*
  • Humans
  • Substrate Specificity
  • beta-Lactam Resistance
  • beta-Lactamases / metabolism*
  • beta-Lactams

Substances

  • Anti-Bacterial Agents
  • beta-Lactams
  • beta-Lactamases