Purpose: To combine three magnetic resonance (MR) imaging modalities-dobutamine stress cine, first pass, and late contrast material-enhanced T1-weighted imaging-and to compare the results with 2-[fluorine 18]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) in the assessment of unviable myocardium in coronary artery disease.
Materials and methods: Ten patients with multivessel coronary artery disease underwent MR imaging before and 6 months after bypass surgery. Left ventricular cine MR imaging was performed at rest and during dobutamine infusion. Inversion-recovery gradient-echo images were obtained to study myocardial contrast enhancement at first pass and 5 minutes later. FDG PET was performed with orally administered acipimox before surgery.
Results: With dobutamine cine MR imaging, unviable myocardium was detected with a sensitivity of 79% and a specificity of 93%; postoperative wall thickening was the standard. First-pass analysis increased these values to 97% and 96%; analysis of late enhancement with T1-weighted imaging, to 62% and 98%. FDG PET had a sensitivity of 81% and a specificity of 86%.
Conclusion: The combination of first-pass enhancement analysis and wall motion assessment with stress significantly increases the specificity of MR imaging in the detection of unviable sectors.