4-Hydroxy-2-nonenal and ethyl linoleate form N(2),3-ethenoguanine under peroxidizing conditions

Chem Res Toxicol. 2000 Dec;13(12):1243-50. doi: 10.1021/tx0001124.

Abstract

In these studies, we demonstrate that N(2),3-ethenoguanine (N(2), 3-epsilonGua) is formed from lipid peroxidation as well as other oxidative reactions. Ethyl linoleate (EtLA) or 4-hydroxy-2-nonenal (HNE) was reacted with dGuo in the presence of tert-butyl hydroperoxide (t-BuOOH) for 72 h at 50 degrees C. The resulting N(2), 3-epsilonGua was characterized by liquid chromatography/electrospray mass spectroscopy and by gas chromatography/high-resolution mass spectral (GC/HRMS) analysis of its pentafluorobenzyl derivative following immunoaffinity chromatography purification. The amounts of N(2),3-epsilonGua formed were 825 +/- 20 and 1720 +/- 50 N(2), 3-epsilonGua adducts/10(6) normal dGuo bases for EtLA and HNE, respectively, corresponding to 38- and 82-fold increases in the amount of N(2),3-epsilonGua compared to controls containing only t-BuOOH. Controls containing t-BuOOH but no lipid resulted in a >1000-fold increase in the level of N(2),3-epsilonGua over dGuo that was not subjected to incubation. EtLA and HNE, in the presence of t-BuOOH, were reacted with calf thymus DNA at 37 degrees C for 89 h. The amounts of N(2),3-epsilonGua formed in intact ctDNA were 114 +/- 32 and 52.9 +/- 16.7 N(2),3-epsilonGua adducts/10(6) normal dGuo bases for EtLA and HNE, respectively. These compared to 2.02 +/- 0. 17 and 2.05 +/- 0.47 N(2),3-epsilonGua adducts/10(6) normal dGuo bases in control DNA incubated with t-BuOOH, but no lipid. [(13)C(18)]EtLA was reacted with dGuo to determine the extent of direct alkylation by lipid peroxidation byproducts. These reactions resulted in a 89-93% level of incorporation of the (13)C label into N(2),3-epsilonGua when EtLA and dGuo were in equimolar concentrations, when EtLA was in 10-fold molar excess, and when deoxyribose (thymidine) was in 10-fold molar excess. Similar reactions with ctDNA resulted in an 86% level of incorporation of the (13)C label. These data demonstrate that N(2),3-epsilonGua is formed from EtLA and HNE under peroxidizing conditions by direct alkylation. The data also suggest, however, that N(2),3-epsilonGua is also formed by an alternative mechanism that involves some other oxidative reaction which remains unclear.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Aldehydes / chemistry*
  • Animals
  • Cattle
  • Chromatography, High Pressure Liquid
  • DNA Adducts / chemistry
  • Gas Chromatography-Mass Spectrometry
  • Guanosine / analogs & derivatives*
  • Guanosine / chemistry*
  • Linoleic Acids / chemistry*
  • Lipid Peroxidation*
  • Mutagens / chemistry*

Substances

  • Aldehydes
  • DNA Adducts
  • Linoleic Acids
  • Mutagens
  • N(2),3-ethenoguanosine
  • Guanosine
  • 4-hydroxy-2-nonenal
  • ethyl linoleate