The genetic and physiological characterization of circling, hearing-impaired mouse mutants has greatly facilitated our understanding of non-syndromic sensorineural deafness, the most common form of hereditary human hearing loss. Here we report the first phenotypic characterization of three alleles of Ames waltzer (av). Neither electrical potentials (auditory brainstem response) nor behavioral responses to sound could be evoked in any of the three alleles at any age or frequency. However, the endocochlear potential was found to be normal, indicating that the primary pathology is not in the stria vascularis. To determine the earliest changes and help identify the primary causes of deafness in av, we performed morphological studies in 15-16 day old mutants, just prior to the maturation of the cochlea. Although av(2J) is slightly more affected than the other two alleles, our studies show a high similarity between all three alleles. The first detectable changes are observed in the stereocilia and cytoplasm of hair cells, and in the cellular shape and microvilli of supporting cells. These changes are followed by degeneration of the cochlear and vestibular neuroepithelium.