Heme protein-induced chronic renal inflammation: suppressive effect of induced heme oxygenase-1

Kidney Int. 2001 Jan;59(1):106-17. doi: 10.1046/j.1523-1755.2001.00471.x.

Abstract

Background: Heme oxygenase (HO) is the rate-limiting enzyme in the degradation of heme; its inducible isozyme, HO-1, protects against acute heme protein-induced nephrotoxicity and other forms of acute tissue injury. This study examines the induction of HO-1 in the kidney chronically inflamed by heme proteins and the functional significance of such an induction of HO-1.

Methods: Studies were undertaken in a patient with chronic tubulointerstitial disease in the setting of paroxysmal nocturnal hemoglobinuria (PNH), in a rat model of chronic tubulointerstitial nephropathy caused by repetitive exposure to heme proteins, and in genetically engineered mice deficient in HO-1 (HO-1 -/-) in which hemoglobin was repetitively administered.

Results: The kidney in PNH evinces robust induction of HO-1 in renal tubules in the setting of chronic inflammation. The heme protein-enriched urine from this patient, but not urine from a healthy control subject, induced expression of HO-1 in renal tubular epithelial cells (LLC-PK1 cells). A similar induction of HO-1 and related findings are recapitulated in a rat model of chronic inflammation induced by repetitive exposure to heme proteins. Additionally, in the rat, the administration of heme proteins induces monocyte chemoattractant protein (MCP-1). The functional significance of HO-1 so induced was uncovered in the HO-1 knockout mouse: Repeated administration of hemoglobin to HO-1 +/+ and HO-1 -/- mice led to intense interstitial cellular inflammation in HO-1 -/- mice accompanied by striking up-regulation of MCP-1 and activation of one of its stimulators, nuclear factor-kappaB (NF-kappaB). These findings were not observed in similarly treated HO-1 +/+ mice or in vehicle-treated HO-1 -/- and HO-1 +/+ mice.

Conclusion: We conclude that up-regulation of HO-1 occurs in the kidney in humans and rats repetitively exposed to heme proteins. Such up-regulation represents an anti-inflammatory response since the genetic deficiency of HO-1 markedly increases activation of NF-kappaB, MCP-1 expression, and tubulointerstitial cellular inflammation.

Publication types

  • Case Reports
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adult
  • Animals
  • Chronic Disease
  • Drug Administration Schedule
  • Enzyme Induction
  • Heme / pharmacology
  • Heme / physiology*
  • Heme Oxygenase (Decyclizing) / genetics
  • Heme Oxygenase (Decyclizing) / metabolism
  • Heme Oxygenase (Decyclizing) / physiology*
  • Heme Oxygenase-1
  • Hemoglobinuria, Paroxysmal / enzymology
  • Humans
  • Kidney / enzymology
  • Membrane Proteins
  • Mice
  • Mice, Knockout / genetics
  • Nephritis / etiology*
  • Rats
  • Up-Regulation

Substances

  • Membrane Proteins
  • Heme
  • HMOX1 protein, human
  • Heme Oxygenase (Decyclizing)
  • Heme Oxygenase-1
  • Hmox1 protein, mouse