The transport and intraluminal reduction of dehydroascorbate was investigated in microsomal vesicles from various tissues. The highest rates of transport and intraluminal isotope accumulation (using radiolabeled compound and a rapid filtration technique) were found in hepatic microsomes. These microsomes contain the highest amount of protein-disulfide isomerase, which is known to have a dehydroascorbate reductase activity. The steady-state level of intraluminal isotope accumulation was more than 2-fold higher in hepatic microsomes prepared from spontaneously diabetic BioBreeding/Worcester rats and was very low in fetal hepatic microsomes although the initial rate of transport was not changed. In these microsomes, the amount of protein-disulfide isomerase was similar, but the availability of protein thiols was different and correlated with dehydroascorbate uptake. The increased isotope accumulation was accompanied by a higher rate of dehydroascorbate reduction and increased protein thiol oxidation in microsomes from diabetic animals. The results suggest that both the activity of protein-disulfide isomerase and the availability of protein thiols as reducing equivalents can play a crucial role in the accumulation of ascorbate in the lumen of the endoplasmic reticulum. These findings also support the fact that dehydroascorbate can act as an oxidant in the protein-disulfide isomerase-catalyzed protein disulfide formation.