Hyperbaric oxygen reduces cerebral blood flow by inactivating nitric oxide

Nitric Oxide. 2000 Dec;4(6):597-608. doi: 10.1006/niox.2000.0313.

Abstract

Based on recent evidence that nitric oxide (NO(.)) is involved in hyperoxic vasoconstriction, we tested the hypothesis that decreases in NO(.) availability in brain tissue during hyperbaric oxygen (HBO(2)) exposure contribute to decreases in regional cerebral blood flow (rCBF). rCBF was measured in rats exposed to HBO(2) at 5 atmospheres (ATA) and correlated with interstitial brain levels of NO(.) metabolites (NO(X)) and production of hydroxyl radical ((.)OH). Changes in rCBF were also correlated with the effects of NO(.) synthase inhibitor (l-NAME), NO(.) donor PAPANONOate, and intravascular superoxide dismutase (MnSOD) during HBO(2). After 30 min of O(2) exposure at 5 ATA, rCBF had decreased in the substantia nigra, caudate putamen, hippocampus, and parietal cortex by 23 to 37%. These reductions in rCBF were not augmented by exposure to HBO(2) in animals pre-treated with l-NAME. After 30 min at 5 ATA, brain NO(X) levels had decreased by 31 +/- 9% and correlated with the decrease in rCBF, while estimated (.)OH production increased by 56 +/- 8%. The decrease in rCBF at 5 ATA was completely abolished by MnSOD administration into the circulation before HBO(2) exposure. Doses of NO(.) donor that significantly increased rCBF in animals breathing air had no effect at 5 ATA of HBO(2). These results indicate that decreases in rCBF with HBO(2) are associated with a decrease in effective NO(.) concentration and an increase in ROS production in the brain. The data support the hypothesis that inactivation of NO(.) antagonizes basal relaxation of cerebral vessels during HBO(2) exposure, although an effect of HBO(2) on NO(.) synthesis has not been excluded.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood Flow Velocity / drug effects
  • Blood Gas Analysis
  • Blood Pressure / drug effects
  • Cerebrovascular Circulation / drug effects
  • Cerebrovascular Circulation / physiology*
  • Corpus Striatum / metabolism
  • Electroencephalography
  • Enzyme Inhibitors / pharmacology
  • Hydrazines / administration & dosage
  • Hydroxybenzoates / metabolism
  • Hydroxyl Radical / metabolism
  • Hyperbaric Oxygenation*
  • Injections, Intravenous
  • Microdialysis
  • NG-Nitroarginine Methyl Ester / administration & dosage
  • Nitrates / metabolism
  • Nitric Oxide / administration & dosage
  • Nitric Oxide / antagonists & inhibitors*
  • Nitric Oxide / metabolism*
  • Nitrites / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Superoxide Dismutase / administration & dosage

Substances

  • Enzyme Inhibitors
  • Hydrazines
  • Hydroxybenzoates
  • Nitrates
  • Nitrites
  • PAPA NONOate
  • Nitric Oxide
  • Hydroxyl Radical
  • 2,3-dihydroxybenzoic acid
  • Superoxide Dismutase
  • NG-Nitroarginine Methyl Ester