Bone morphogenetic proteins (BMPs) can be isolated from organic bone matrix and are able to initiate de novo cartilage and bone formation. Here it is shown that BMP-4 inhibited DNA synthesis in a dose-dependent manner in 3 IL-6-dependent multiple myeloma (MM) cell lines (OH-2, IH-1, and ANBL-6). In contrast, no effect on DNA synthesis was observed in 3 IL-6-independent MM cell lines (JJN-3, U266, and RPMI 8226). BMP-4 induced cell cycle growth arrest in the G(0)/G(1) phase in OH-2 and ANBL-6 cells but not in IH-1 cells. BMP-4 induced apoptosis in OH-2 and IH-1 cells, but not significantly in ANBL-6 cells. Furthermore, BMP-4 induced apoptosis in freshly isolated MM cells from 4 of 13 patients. In the OH-2 and ANBL-6 cell lines and in a patient sample, immunoblotting showed that BMP-4 down-regulated IL-6-induced tyrosine phosphorylation of Stat3, suggesting a mechanism for the apparent antagonism between IL-6 and BMP-4. BMP-4 or analogues may be attractive therapeutic agents in MM because of possible beneficial effects on both tumor burden and bone disease.