The double-stranded RNA-dependent protein kinase PKR plays a central role in IFN-mediated antiviral response. The ability of PKR mutants to transform rodent fibroblasts led to the hypothesis that PKR acts as a tumor suppressor. Recent studies have identified an expanding network of PKR signaling partners, including signal transducers and activators of transcription 1 (STAT1), p53, and IkappaB-kinase. Here we demonstrate that PKR is involved in the cellular response to genotoxic stress. PKR-deficient mouse-embryonic fibroblasts (PKR-/-) are hypersensitive to bulky adduct DNA damage caused by cisplatin, melphalan, and UV radiation but not to other DNA-damaging agents such as Adriamycin. PKR-deficient cells are highly susceptible to cisplatin-induced apoptosis. They demonstrate retarded cisplatin adduct removal kinetics. Most strikingly, PKR localizes to the nucleus rapidly upon cisplatin treatment. Restoration of PKR in PKR-/- cells results in resistance to cisplatin and enhanced cell capacity to remove cisplatin DNA adducts. We conclude that PKR has a function in the regulation of cellular response to bulky adduct-inducing agents, possibly by modulating DNA repair mechanisms.