Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression

J Clin Invest. 2001 Feb;107(3):351-62. doi: 10.1172/JCI9940.

Abstract

Large granular lymphocyte (LGL) leukemia is characterized by the expansion of antigen-activated cytotoxic T lymphocytes. These leukemic cells are resistant to Fas-mediated apoptosis despite expressing high levels of Fas. We found that leukemic LGL from 19 patients displayed high levels of activated STAT3. Treatment of leukemic LGL with the JAK-selective tyrosine kinase inhibitor AG-490 induced apoptosis with a corresponding decrease in STAT-DNA binding activity. Moreover, using an antisense oligonucleotide approach to diminish STAT3 expression, we found that Fas sensitivity was restored in leukemic LGL. AG-490-induced apoptosis in leukemic LGL was independent of Bcl-xL or Bcl-2 expression. However, we found that the Bcl-2-family protein Mcl-1 was significantly reduced by AG-490 treatment. Activated STAT3 was shown to bind an SIE-related element in the murine mcl-1 promoter. Using a luciferase reporter assay, we demonstrated that v-src overexpression in NIH3T3 induced STAT3-dependent transcriptional activity from the mcl-1 promoter and increased endogenous Mcl-1 protein levels. We conclude that STAT3 activation contributed to accumulation of the leukemic LGL clones. These findings suggest that investigation should focus on novel strategies targeting STAT3 in the treatment of LGL leukemia.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Apoptosis / drug effects
  • Blotting, Western
  • CD8-Positive T-Lymphocytes / drug effects
  • CD8-Positive T-Lymphocytes / physiology*
  • Cell Line
  • DNA-Binding Proteins / antagonists & inhibitors*
  • DNA-Binding Proteins / metabolism
  • Dimerization
  • Enzyme Inhibitors / pharmacology
  • Gene Expression Regulation
  • Humans
  • Leukemia / physiopathology*
  • Myeloid Cell Leukemia Sequence 1 Protein
  • Neoplasm Proteins / biosynthesis*
  • Neoplasm Proteins / genetics
  • Oncogene Protein pp60(v-src)
  • Phosphorylation
  • Proto-Oncogene Proteins c-bcl-2*
  • STAT3 Transcription Factor
  • Signal Transduction
  • Trans-Activators / antagonists & inhibitors*
  • Trans-Activators / metabolism
  • Tumor Cells, Cultured
  • Tyrphostins / pharmacology

Substances

  • DNA-Binding Proteins
  • Enzyme Inhibitors
  • Myeloid Cell Leukemia Sequence 1 Protein
  • Neoplasm Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • STAT3 Transcription Factor
  • STAT3 protein, human
  • Trans-Activators
  • Tyrphostins
  • alpha-cyano-(3,4-dihydroxy)-N-benzylcinnamide
  • Oncogene Protein pp60(v-src)