Long-term potentiation (LTP) involves a prolonged increase in neuronal excitability following repeated afferent input. This phenomenon has been extensively studied in the hippocampus as a model of learning and memory. Similar long-term increases in neuronal responses have been reported in the dorsal horn of the spinal cord following intense primary afferent stimulation. In these studies, we utilized the spinal cord slice preparation to examine effects of the potently antinociceptive mu opioids in modulating primary afferent/dorsal horn neurotransmission as well as LTP of such transmission. Transverse slices were made from the lumbar spinal cord of 10- to 17-day-old rats, placed in a recording chamber, and perfused with artificial cerebrospinal fluid also containing bicuculline (10 microM) and strychnine (1 microM). Primary afferent activation was achieved in the spinal slice by electrical stimulation of the dorsal root (DR) or the tract of Lissauer (LT) which is known to contain a high percentage of small diameter fibers likely to transmit nociception. Consistent with this anatomy, response latencies of LT-evoked field potentials in the dorsal horn were considerably slower than the response latencies of DR-evoked potentials. Only LT-evoked field potentials were found to be reliably inhibited by the mu opioid receptor agonist [D-Ala(2), N-Me-Phe(4), Gly(5)] enkephalin-ol (DAMGO, 1 microM), although evoked potentials from both DR and LT were blocked by the AMPA/kainate glutamate receptor antagonist 6-cyano-7-nitroquinoxalene-2,3-dione. Moreover repeated stimulation of LT produced LTP of LT- but not DR-evoked potentials. In contrast, repeated stimulation of DR showed no reliable LTP. LTP of LT-evoked potentials depended on N-methyl-D-aspartate (NMDA) receptor activity, in that it was attenuated by the NMDA antagonist APV. Moreover, such LTP was inhibited by DAMGO interfering with LTP induction mechanisms. Finally, in whole cell voltage-clamp studies of Lamina I neurons, DAMGO inhibited excitatory postsynaptic current (EPSC) response amplitudes from LT stimulation-evoked excitatory amino acid release but not from glutamate puffed onto the cell and increased paired-pulse facilitation of EPSCs evoked by LT stimulation. These studies suggest that mu opioids exert their inhibitory effects presynaptically, likely through the inhibition of glutamate release from primary afferent terminals, and thereby inhibit the induction of LTP in the spinal dorsal horn.