The induction of interleukin-6 (IL-6), using a proinflammatory cytokine (tumor necrosis factor-alpha), was studied in a human osteoblast cell line (MG-63) in relation to p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappaB transcription factor. When added to MG-63 cells, tumor necrosis factor-alpha (TNF-alpha) had a stimulatory effect on the production of IL-6, and this elevation was significantly reduced by SB203580, a specific p38 MAPK inhibitor. In addition, the stimulation of IL-6 release was also reduced by pyrrolidine dithiocarbamate (PDTC) or NF-kappaB SN50, which has been reported to be a potent NF-kappaB inhibitor. Both the NF-kappaB inhibitors in the presence of SB203580 had a more inhibitory effect on IL-6 release. In this study, TNF-alpha stimulated NF-kappaB binding affinity as well as p38 MAP kinase activation, leading to the release of IL-6. However, the specific inhibitor of p38 MAPK, SB203580, had no effect on TNF-alpha-induced NF-kappaB activation and both NF-kappaB inhibitors failed to reduce the p38 MAPK activation in the TNF-alpha-stimulated osteoblasts. In addition, inhibition of p38 MAPK partially, but significantly, impaired TNF-alpha-regulated release of osteocalcin, an important differentiation marker in osteoblasts. These results strongly suggest that both p38 MAPK and NF-kappaB are required in TNF-alpha-induced IL-6 synthesis and that these two TNF-alpha-activated pathways can be primarily dissociated. Furthermore, p38 MAPK may play a significant role in differentiation in MG-63 cells.