Experience-dependent visual cue integration based on consistencies between visual and haptic percepts

Vision Res. 2001 Feb;41(4):449-61. doi: 10.1016/s0042-6989(00)00254-6.

Abstract

We study the hypothesis that observers can use haptic percepts as a standard against which the relative reliabilities of visual cues can be judged, and that these reliabilities determine how observers combine depth information provided by these cues. Using a novel visuo-haptic virtual reality environment, subjects viewed and grasped virtual objects. In Experiment 1, subjects were trained under motion relevant conditions, during which haptic and visual motion cues were consistent whereas haptic and visual texture cues were uncorrelated, and texture relevant conditions, during which haptic and texture cues were consistent whereas haptic and motion cues were uncorrelated. Subjects relied more on the motion cue after motion relevant training than after texture relevant training, and more on the texture cue after texture relevant training than after motion relevant training. Experiment 2 studied whether or not subjects could adapt their visual cue combination strategies in a context-dependent manner based on context-dependent consistencies between haptic and visual cues. Subjects successfully learned two cue combination strategies in parallel, and correctly applied each strategy in its appropriate context. Experiment 3, which was similar to Experiment 1 except that it used a more naturalistic experimental task, yielded the same pattern of results as Experiment 1 indicating that the findings do not depend on the precise nature of the experimental task. Overall, the results suggest that observers can involuntarily compare visual and haptic percepts in order to evaluate the relative reliabilities of visual cues, and that these reliabilities determine how cues are combined during three-dimensional visual perception.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Cues*
  • Depth Perception / physiology*
  • Humans
  • Memory / physiology*
  • Motion Perception / physiology*
  • Touch / physiology*
  • User-Computer Interface