A validated real-time quantitative PCR approach shows a correlation between tumor burden and successful ex vivo purging in follicular lymphoma patients

Exp Hematol. 2001 Feb;29(2):183-93. doi: 10.1016/s0301-472x(00)00651-2.

Abstract

Objective: Purging procedures are increasingly used to provide stem cell collections devoid of contaminating tumor cells. In follicle center lymphoma (FCL), most approaches eradicate polymerase chain reaction (PCR);-detectable disease in only a fraction of harvests undergoing ex vivo manipulation. In this study we evaluated whether there is a relationship between tumor burden of stem cell harvests and successful clearance of PCR-detectable disease following ex vivo manipulation.

Materials and methods: To address this issue, we developed a real-time PCR approach for quantitative measurement of tumor contamination using the bcl-2 rearrangement. Real-time PCR was used to evaluate the relationship between tumor burden of stem-cell harvests and purging effectiveness in PCR(+) samples derived from 10 FCL patients. Ex vivo purging was performed using the MaxSep cell separator (Baxter Immunotherapy, Deerfield, IL, USA).

Results: Our real-time PCR method proved effective, sensitive, accurate, and reproducible. Four collections were successfully cleared of minimal residual disease (MRD) whereas six remained PCR(+). Real-time PCR showed that the four collections successfully cleared of MRD had a prepurging tumor burden significantly lower than those remaining PCR(+) (p = 0.04).

Conclusion: This study provides the first evidence that evaluation of tumor burden in stem-cell harvests by real-time PCR can predict the effectiveness of therapeutic intervention in non-Hodgkin's lymphoma. Based on these findings, we foresee a more widespread use of this technique to evaluate the impact of different therapeutic approaches in FCL.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adolescent
  • Adult
  • Base Sequence
  • Blood Component Removal / methods*
  • Gene Rearrangement
  • Glyceraldehyde-3-Phosphate Dehydrogenases / genetics
  • Hematopoietic Stem Cell Transplantation
  • Hematopoietic Stem Cells / cytology*
  • Humans
  • Lymphoma, Follicular / blood*
  • Lymphoma, Follicular / therapy
  • Middle Aged
  • Molecular Sequence Data
  • Neoplasm, Residual / blood
  • Polymerase Chain Reaction / methods*
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Translocation, Genetic
  • Transplantation, Autologous

Substances

  • Proto-Oncogene Proteins c-bcl-2
  • Glyceraldehyde-3-Phosphate Dehydrogenases