Mammalian meiotic progression, like mitotic cell cycle progression, is regulated by cyclins and cyclin dependent kinases (CDKs). However, the unique requirements of meiosis (homologous synapsis, reciprocal recombination and the dual divisions that segregate first homologues, then sister chromatids) have led to different patterns of CDK expression. Here we show that Cdk4 colocalizes with replication protein A (RPA) on the synaptonemal complexes (SCs) of newly synapsed axes of homologously pairing bivalents, but disappears from these axes by mid-pachynema. The switch from the mitotic pattern of expression occurs during the last two spermatogonial divisions. Cdk2 colocalizes with MLH1, a mismatch repair protein at sites of reciprocal recombination in mid-late pachynema. In addition Cdk2 localizes to the telomeres of chromosomal bivalents throughout meiotic prophase. The mitotic pattern of expression of Cdk2 remains unchanged throughout the spermatogonial divisions, but is altered in meiosis of the spermatocytes.