In many human hematologic and solid malignancies, intrinsic or acquired treatment resistance remains a major obstacle for successful cancer therapy. The molecular understanding of how tumor cells respond to chemotherapy and ionizing radiation is rapidly evolving. Induction of programmed cell death, apoptosis, is one important strategy for successful cancer therapy. This has been shown convincingly for oncogene-transformed normal cells as well as tumor cells of lymphoid origin. However, the relevance of apoptosis in solid human malignancies is less clear. Loss of apoptosis might be linked to specific mutations in the often tissue-specific apoptotic pathways due to aberrations in the stress-related signal transduction cascades. Restoration of a dysfunctional apoptotic program in cancer tissue where apoptosis has been identified as an important mechanism for tissue homeostasis is one rational approach for innovative cancer therapy. In this review, we focus on the relevance of the tumor suppressor p53 for apoptosis-induction and successful cancer therapy outlining the importance of an intact caspase machinery for apoptosis execution. Strategies are discussed to overcome treatment resistance and a high apoptotic threshold in human malignancies where apoptosis is the dominant mode of cell death and the status of p53 is an important determinant for apoptosis induction.