Whole-cell patch-clamp recordings were performed on 12- to 15-day-old rat locus coeruleus neurones in a midpontine slice preparation. Application of noradrenaline (100 microM) and N-methyl-D-aspartate (NMDA; 100 microM) induced a small outward current and a distinct inward current, respectively. Single-cell reverse transcriptase-polymerase chain reaction (scRT-PCR), used to analyse the expression pattern of NMDA receptor subunits 2A, 2B, and 2C (NR2A-C) subsequent to electrophysiological characterization, demonstrated differences in the capacity of individual locus coeruleus neurones to express NR2A-C mRNA. NR2C mRNA expression predominated over those of NR2A and NR2B mRNA in most neurones. In addition, in neurones containing NR2C mRNA NMDA induced significantly larger currents than in cells lacking expression of this gene. RT-PCR studies performed on tissue preparations of adult rats also revealed a distinct expression of NR2C mRNA. In conclusion, the present data demonstrate differences in the mRNA expression pattern of NR2A-C of individual locus coeruleus neurones with a predominant NR2C mRNA expression in the majority of the cells.