Fibroblast growth factor 2 activation of stromal cell vascular endothelial growth factor expression and angiogenesis

Lab Invest. 2001 Jan;81(1):61-75. doi: 10.1038/labinvest.3780212.

Abstract

Angiogenesis is a key component of human cancer progression and metastasis. In an effort to recapitulate early events in tumor-induced angiogenesis, we have employed a subcutaneous Matrigel implant model using immunodeficient mice as hosts. Matrigel-containing fibroblast growth factor 2 (FGF-2; 1.2 microg/ml) induced stromal cell infiltration into the Matrigel/skin interface within 4 days and maximal neovascularization at 7 days. Cells staining positive for the endothelial cell marker, platelet-endothelial cell adhesion molecule 1 (PECAM-1), were present in neovessels and in isolated cells within the Matrigel matrix. Immunohistochemical analysis revealed high levels of vascular endothelial growth factor (VEGF) deposited in the stromal interface present only in the FGF-2-containing but not in control Matrigel implants. VEGF expression was confirmed with in situ hybridization. High VEGF mRNA levels were observed in the infiltrating stromal cells but not in endothelial or endothelial precursors as defined by PECAM-1 staining. In vitro analysis of FGF-2-treated embryonic fibroblasts, Balb/c 3T3 cells, showed an induction of VEGF transcription, mRNA synthesis, and protein secretion as defined by transcriptional reporter, Northern blot, and ELISA assays. The FGF-2-induced VEGF expression was not dependent on select matrix adherence or signaling components because VEGF mRNA expression induced by FGF-2 was equally activated on serum, basement membrane, and fibronectin matrix substrates. Systemic application of anti-VEGF antibodies significantly repressed FGF-2-induced angiogenesis over control antibody by 88% (p < 0.001). These data support an FGF-2 angiogenic model that is dependent on endothelial cell activation, stromal cell infiltration, and VEGF expression by the infiltrating stromal cell population.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • 3T3 Cells
  • Animals
  • Endothelial Growth Factors / genetics
  • Endothelial Growth Factors / metabolism*
  • Female
  • Fibroblast Growth Factor 2 / pharmacology*
  • Gene Expression / drug effects
  • Humans
  • Lymphokines / genetics
  • Lymphokines / metabolism*
  • Mice
  • Mice, Nude
  • Neoplasms / blood supply
  • Neovascularization, Pathologic*
  • Platelet Endothelial Cell Adhesion Molecule-1 / metabolism
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • Stromal Cells / drug effects*
  • Stromal Cells / metabolism*
  • Transfection
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors

Substances

  • Endothelial Growth Factors
  • Lymphokines
  • Platelet Endothelial Cell Adhesion Molecule-1
  • RNA, Messenger
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors
  • Fibroblast Growth Factor 2