Aspirin reduces the incidence of thrombotic occlusive events. Classically this has been thought to be due to the platelet inhibitory action of aspirin but it has recently been shown that inflammation plays a predominant role in the initiation and progression of lesions in atherosclerosis. In humans, treatment with aspirin reduces cardiovascular risk and slows carotid plaque growth in a dose-dependent fashion. We have explored this issue in Apo E-deficient mice on a high-fat, high cholesterol diet which provided these animals with a continuous administration of 500 microg/day of acetylsalicylic acid in the drinking water. After 10 weeks of treatment, the size of the atherosclerotic lesion at the aortic sinus had reduced by 35%. At the end of the trial there were no significant changes in either plasma lipids or in the quantitative distribution among lipoproteins. Likewise, the total antioxidant status and the resistance of plasma to oxidation in vitro was similar and there was no change in the distribution of iron deposits and in the relative composition of plasma pro-oxidants and antioxidants, or in the concentration of plasma in ferritin. Therefore, it is our hypothesis that the antiinflammatory effect is responsible for the reduction in lesion size. We propose that antiinflammatory molecules which do not cause gastrointestinal complications should be tested in humans to determine long-term efficacy in the attenuation of atherosclerosis.