IL-7 is a critical cytokine in the development of T and B cells but little is known about its activity on nonhematopoietic cells. An unexpected finding was noted in allogeneic bone marrow transplant studies using IL-7 receptor null (IL-7R alpha(-/-)) mice as recipients. These mice exhibited a significantly greater weight loss after total body irradiation compared with wild type, IL-7R alpha(+/+), mice. Pathological assessment indicated greater intestinal crypt damage in IL-7R alpha(-/-) recipients, suggesting these mice may be predisposed to gut destruction. Therefore, we determined the effect of the conditioning itself on the intestinal tract of these mice. IL-7R alpha(-/-) mice and IL-7R alpha(+/+) mice were irradiated and examined for lesions and apoptosis within the small intestine. In moribund animals, IL-7R alpha(-/-) mice had extensive damage in the small intestine, including marked ablation of the crypts and extreme shortening of villi following 1500 cGy total body irradiation. In contrast, by 8 days after irradiation, the small intestines of IL-7R alpha(+/+) mice had regenerated as distinguished by normal villus length and hyperplastic crypts. Following 750 cGy irradiation, IL-7R alpha(-/-) mice had a higher proportion of apoptotic cells in the crypts and an accompanying increase in the pro-apoptotic protein Bak was expressed in intestinal epithelial cells. These results demonstrate the increased radiosensitivity of intestinal stem cells within the crypts in IL-7R alpha(-/-) mice and a role for IL-7 in the protection of radiation-induced apoptosis in these same cells. This study describes a novel role of IL-7 in nonhematopoietic tissues.